

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

1 Overview

The CANdo SDK (Software Development Kit) is designed to allow the CANdo, CANdoISO & CANdo
AUTO devices to be easily integrated into any Windows or Linux program written in a high level
language. Examples are included within the SDK written in C, C#, Pascal & Visual Basic.

On Windows, the core components of the SDK are the CANdo.dll & CANdoUSB.dll dynamic link
libraries. The CANdo.dll contains all the API functions necessary to communicate with the CANdo
devices, via the CANdoUSB.dll. The CANdoUSB.dll contains the interface between the CANdo.dll &
the CANdo driver. Both DLLs must be present in the project directory or within a directory known to
Windows, such as the \Windows\System32 or equivalent. The SDK contains both 32 & 64 bit versions
of the CANdo DLLs. The CANdo DLLs & the USB driver are designed to operate with Microsoft
Windows XP, Vista, 7, 8 & 8.1.

On Linux, the core components of the SDK are the libCANdo.so & libusb-1.0.so shared libraries. The
libCANdo.so contains all the API functions necessary to communicate with the CANdo devices, via
libusb-1.0.so library. The libusb-1.0.so shared library provides the low level USB interface to the
CANdo device. This libusb-1.0 library is not included within the SDK, but is installed by default on most
Linux installations. The libCANdo.so library is designed to work with the libusb-1.0 library & the Linux
kernel 2.6 or newer.

The CANdo, CANdoISO & CANdo AUTO devices are all software compatible from the perspective of
the SDK. However, there are a couple of extra functions supported by only the CANdoISO & CANdo
AUTO devices. There are also a group of functions that allow configuration of the CANdo AUTO
device via the SDK & these functions are not supported by the other devices. The descriptions of the
API functions in the next section describe the common features & the additional features of the
CANdoISO & CANdo AUTO devices.

CANdo is the generic name for all the CANdo hardware types & in the descriptions of the API
functions below, the name CANdo refers to the CANdo, CANdoISO & CANdo AUTO devices.
However, a specific reference to either CANdoISO or CANdo AUTO refers to that device type only.

Application Note NET50003/2

CANdo Programmer’s Guide

Linux Application

 CANdo

 libusb-1.0.so – USB Driver

 libCANdo.so – CANdo API

Windows Application

 CANdo

 CANdo.dll – CANdo API

 CANdoUSB.dll – Driver I/F

 USB Driver

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

2 History

Version Date Modifications Author
1.0 01/05/06 Created MJB

1.1 16/05/06 Appendix B – „CAN Receive Message Filtering‟ added ,,

2.0 30/08/10  Updated for CANdo API DLL v2.0

 CANdoOpen function return values updated

 CANdoReceive function return values updated

 CANdoGetVersion function added

 Appendix C – „Version Revision Notes‟ added

,,

2.1 10/01/11  Updated for CANdo API DLL v2.1

 CANdoClose function modified to return status

 CANDO_INVALID_HANDLE return value added

,,

2.2 24/02/11  Updated for CANdo API DLL v2.2

 CANdoGetDevices function added

 CANdoOpenDevice function added

 CANdoDevice variable type added

 CANdo hardware type constants added

 CANdoTransmit function modified

,,

2.3 16/06/11  Updated for CANdo API DLL v2.3

 CANdoISO support added

,,

3.0 14/11/11  Updated for CANdo API DLL v3.0

 CANdoStatus NewFlag constants added

 CANdoStatus NewFlag operation modified

 CANdo USB PID constants added

 CANdoGetPID function added

 CANdoRequestDateStatus function added

 CANdoRequestBusLoadStatus function added

 CANdoClearStatus function added

 CANdoReceive function modified

 CANdoSetBaudRate function updated for CANdoISO

,,

4.0 20/08/13  Updated for CANdo API DLL v4.0

 CANdoRequestSetupStatus function added

 CANdoRequestAnalogInputStatus function added

 CANdoAnalogStoreRead function added

 CANdoAnalogStoreWrite function added

 CANdoAnalogStoreClear function added

 CANdoTransmitStoreRead function added

 CANdoTransmitStoreWrite function added

 CANdoTransmitStoreClear function added

,,

4.1 04/06/14 Linux SDK details added ,,

See Appendix C for details of changes between revisions of the SDK.

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

3 CANdo API

The CANdo API functions that reside within the API library, CANdo.dll/libCANdo.so, are listed in the
section below. The constants & variable types used by the functions are described in Appendix A.

 CANdoGetPID(unsigned int CANdoNo, TCANdoDeviceString PID)

 CANdoGetDevices(const TCANdoDevices CANdoDevices, unsigned int * NoOfDevices)

 CANdoOpen(const PCANdoUSB CANdoUSBPointer)

 CANdoOpenDevice(const PCANdoUSB CANdoUSBPointer,
const PCANdoDevice CANdoDevicePointer)

 CANdoClose(const PCANdoUSB CANdoUSBPointer)

 CANdoFlushBuffers(const PCANdoUSB CANdoUSBPointer)

 CANdoSetBaudRate(const PCANdoUSB CANdoUSBPointer, unsigned char SJW,
unsigned char BRP, unsigned char PHSEG1, unsigned char PHSEG2,
unsigned char PROPSEG, unsigned char SAM)

 CANdoSetMode(const PCANdoUSB CANdoUSBPointer, unsigned char Mode)

 CANdoSetFilters(const PCANdoUSB CANdoUSBPointer,
unsigned int Rx1Mask,
unsigned char Rx1IDE1, unsigned int Rx1Filter1,
unsigned char Rx1IDE2, unsigned int Rx1Filter2,
unsigned int Rx2Mask,
unsigned char Rx2IDE1, unsigned int Rx2Filter1,
unsigned char Rx2IDE2, unsigned int Rx2Filter2,
unsigned char Rx2IDE3, unsigned int Rx2Filter3,
unsigned char Rx2IDE4, unsigned int Rx2Filter4)

 CANdoSetState(const PCANdoUSB CANdoUSBPointer, unsigned char State)

 CANdoReceive(const PCANdoUSB CANdoUSBPointer,
const PCANdoCANBuffer CANdoCANBufferPointer,
const PCANdoStatus CANdoStatusPointer)

 CANdoTransmit(const PCANdoUSB CANdoUSBPointer,
unsigned char IDExtended, unsigned int ID,
unsigned char RTR, unsigned char DLC, const unsigned char * Data,
unsigned char BufferNo, unsigned char RepeatTime)

 CANdoRequestStatus(const PCANdoUSB CANdoUSBPointer)

 CANdoRequestDateStatus(const PCANdoUSB CANdoUSBPointer)

 CANdoRequestBusLoadStatus(const PCANdoUSB CANdoUSBPointer)

 CANdoRequestSetupStatus(const PCANdoUSB CANdoUSBPointer)

 CANdoRequestAnalogInputStatus(const PCANdoUSB CANdoUSBPointer)

 CANdoClearStatus(const PCANdoUSB CANdoUSBPointer)

 CANdoGetVersion(unsigned int * APIVersion, unsigned int * DLLVersion,
unsigned int * DriverVersion)

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

The CANdoGetDevices(...) function returns a list of all the CANdo devices connected to the PC,
identifying each by hardware type & serial number.

Either the CANdoOpen(…) or CANdoOpenDevice(...) function must be called before using a CANdo
device, in order to open a connection to the device. These functions attempt to find a free CANdo on
the PC, returning a handle to the device if successful. This handle is part of the TCANdoUSB structure
passed into all the other API functions. NOTE : A valid handle must be obtained by calling one of
these functions before calling any of the other SDK functions, except for the functions
CANdoGetPID(…), CANdoGetDevices(...) & CANdoGetVersion(...), as these don‟t require a handle.
The CANdoOpen(…) function returns a connection to the first free CANdo device found, regardless of
hardware type or serial number. The CANdoOpenDevice(…) function allows a particular CANdo
device to be selected based on hardware type, serial number or both. A single entry in the
CANdoDevices array returned by the CANdoGetDevices(…) function maybe passed into the
CANdoOpenDevice(…) function to select a particular device.

After obtaining a handle, the CANdo device is initialised by calls to the CANdoSetBaudRate(…),
CANdoSetMode(…) & CANdoSetFilters(…) functions.

Following initialisation, the CANdoSetState(…) function is called to put CANdo into run mode, enabling
reception & transmission of CAN messages & starting the internal CAN message timestamp.

The CANdoReceive(…) & CANdoTransmit(…) functions, receive & transmit CAN messages
respectively.

The CANdoRequestStatus(…) function requests the internal status of the CANdo unit & the CAN bus.
If any errors are detected in the operation of the CANdo unit or an error occurs on the CAN bus, then
one or more status messages are automatically generated by the CANdo device & returned to the PC.
The status is returned within the TCANdoStatus structure (see Appendix A), which is populated by a
call to the CANdoReceive(...) function.

The CANdoRequestDateStatus(…) function requests the date of manufacture of the device. The
status is returned in the same manner as for the CANdoRequestStatus(...) function.

The CANdoRequestBusLoadStatus(…) function requests the CAN bus message load on the
connected CAN bus. The status is returned in the same manner as for the CANdoRequestStatus(...)
function.

The CANdoRequestSetupStatus(...) function requests the CAN baud rate & CAN operating mode of
the device (CANdo AUTO device only). The status is returned in the same manner as for the
CANdoRequestStatus(...) function.

The CANdoRequestAnalogInputStatus(...) function requests a sample from each of the analogue
inputs of the device (CANdo AUTO device only). The status is returned in the same manner as for the
CANdoRequestStatus(...) function.

The CANdoClearStatus(…) function clears any pending system status message within the CANdo
device. CAN bus related errors are not cleared by this command, as these are handled by the low
level CAN controller.

The CANdoGetVersion(…) function returns the versions of the API library, the USB library & the USB
driver installed on the PC.

The reception & transmission of CAN messages is stopped by a further call to the CANdoSetState(…)
function with the state set to stop.

The CANdoClose(…) function must be called before terminating an application, to close the CANdo
connection & free the handle to the device.

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

The additional API functions listed below also reside within the API library, CANdo.dll/libCANdo.so &
are specific to the CANdo AUTO device only & included to permit configuration of the device using the
SDK.

 CANdoAnalogStoreRead(const PCANdoUSB CANdoUSBPointer)

 CANdoAnalogStoreWrite(const PCANdoUSB CANdoUSBPointer,
unsigned char InputNo, unsigned char IDExtended, unsigned int ID,
unsigned char Start, unsigned char Length,
float ScalingFactor, float Offset,
unsigned char Padding, unsigned char RepeatTime)

 CANdoAnalogStoreClear(const PCANdoUSB CANdoUSBPointer)

 CANdoTransmitStoreRead(const PCANdoUSB CANdoUSBPointer)

 CANdoTransmitStoreWrite(const PCANdoUSB CANdoUSBPointer,
unsigned char IDExtended, unsigned int ID,
unsigned char RTR, unsigned char DLC, const unsigned char * Data,
unsigned char RepeatTime)

 CANdoTransmitStoreClear(const PCANdoUSB CANdoUSBPointer)

The CANdoAnalogStoreRead(...), CANdoAnalogStoreWrite(...) & CANdoAnalogStoreClear(...)
functions read, write & clear the analogue store in non-volatile memory. The analogue store contains
the configuration for the periodic CAN message associated with each analogue input.

The CANdoAnalogStoreClear(...) function erases the configuration within the analogue store, which
disables sampling of all the analogue inputs & transmission of the CAN messages associated with the
analogue inputs.

The CANdoAnalogStoreWrite(...) function configures the analogue input CAN transmit message &
sets the sample/message rate for the input.

The CANdoAnalogStoreRead(...) function requests a read of the contents of the analogue store. The
contents are returned within the TCANdoCANBuffer (see Appendix A) structure, which is populated by
a call to the CANdoReceive(...) function.

The CANdoTransmitStoreRead(...), CANdoTransmitStoreWrite(...) & CANdoTransmitStoreClear(...)
functions read, write & clear the CAN transmit store in non-volatile memory. The CAN transmit store
contains the configuration of up to 10 pre-defined fixed, periodic CAN messages.

The CANdoTransmitStoreClear(...) function erases the configuration within the CAN transmit store,
which disables the transmission of all the fixed, periodic CAN messages.

The CANdoTransmitStoreWrite(...) function configures the CAN transmit store with a single fixed,
periodic CAN transmit message. Each call to the function adds another fixed, periodic message to the
store, up to a maximum of 10.

The CANdoTransmitStoreRead(...) function requests a read of the contents of the CAN transmit store.
The contents are returned within the TCANdoCANBuffer (see Appendix A) structure, which is
populated by a call to the CANdoReceive(...) function.

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

3.1 CANdoGetPID(...)

Prototype

int CANdoGetPID(unsigned int CANdoNo, TCANdoDeviceString PID)

Parameters

CANdoNo – number of the CANdo device, 0 – n (where n = Total no. of
CANdo – 1)
PID – the returned USB PID for the specified CANdo device

Return Value

CANDO_SUCCESS
CANDO_NOT_FOUND

Description

Returns the USB PID (Product ID) for the CANdo device specified by the
CANdoNo parameter. The CANdoNo maybe the No parameter within the
TCANdoUSB structure returned by the functions CANdoOpen &
CANdoOpenDevice. If only one CANdo device is ever likely to be connected
to the PC, then CANdoNo maybe set to 0, to always select the first device.

This function is intended to assist in the identification of custom versions of
the CANdo device that are programmed with a custom PID.

Prerequisites CANdo API Library v3.0 or greater

CANdo Firmware N/A

CANdoISO Firmware N/A

 CANdo AUTO Firmware N/A

3.2 CANdoGetDevices(...)

Prototype

int CANdoGetDevices(const TCANdoDevice CANdoDevices[],
unsigned int * NoOfDevices)

Parameters

CANdoDevices – array of TCANdoDevice
NoOfDevices – pointer to a value passed in that specifies the number of
devices to enumerate & returns with the number of devices found

Return Value

CANDO_SUCCESS
CANDO_USB_DLL_ERROR
CANDO_USB_DRIVER_ERROR
CANDO_NOT_FOUND

Description

Populates the CANdoDevices array passed into the function with the
hardware type & serial number of each device found connected to the PC.
The NoOfDevices parameter must be set to the maximum number of devices
to search for, before the function is called. Typically, NoOfDevices is set to
the declared size of the CANdoDevices array. The value of NoOfDevices
must never be greater than the size of the CANdoDevices array. After the
function returns, the NoOfDevices parameter contains the number of CANdo
devices found.

Prerequisites CANdo API Library v2.2 or greater

CANdo Firmware N/A

CANdoISO Firmware N/A

 CANdo AUTO Firmware N/A

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

3.3 CANdoOpen(…)

Prototype

int CANdoOpen(const PCANdoUSB CANdoUSBPointer)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

Return Value

CANDO_SUCCESS
CANDO_USB_DLL_ERROR
CANDO_USB_DRIVER_ERROR
CANDO_NOT_FOUND
CANDO_CONNECTION_CLOSED
CANDO_IO_FAILED

Description

Finds the next available CANdo connected to the PC. If successful the
function returns a handle to the connected device, together with the device
description & the serial number.

Prerequisites CANdo API Library v1.0 or greater

CANdo Firmware N/A

CANdoISO Firmware N/A

 CANdo AUTO Firmware N/A

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

3.4 CANdoOpenDevice(...)

Prototype

int CANdoOpenDevice(const PCANdoUSB CANdoUSBPointer,
const PCANdoDevice CANdoDevicePointer)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure
CANdoDevicePointer – pointer to TCANdoDevice structure

Return Value

CANDO_SUCCESS
CANDO_USB_DLL_ERROR
CANDO_USB_DRIVER_ERROR
CANDO_NOT_FOUND
CANDO_CONNECTION_CLOSED
CANDO_IO_FAILED

Description

Opens a connection to the CANdo device specified by the hardware type &
serial number passed into the function via the CANdoDevicePointer
parameter. If successful the function returns a handle to the connected
device, together with the device description & the serial number, via the
CANdoUSBPointer parameter. In addition, the hardware type of the
connected device is returned via the CANdoDevicePointer parameter.

The CANdoDevice structure passed into the function contains fields for
hardware type & serial number. To uniquely specify a CANdo device for
connection, both fields must be populated. To select a particular hardware
type only, the serial number maybe set to an empty string (“”), the function
will then connect to the next free device matching the selected hardware
type. To select a device with a specific serial number regardless of hardware
type, the hardware type maybe set to CANDO_TYPE_ANY. A call to this
function with the serial number set to an empty string & the hardware type
set to CANDO_TYPE_ANY is equivalent to a call to the CANdoOpen(…)
function, except that the hardware type of the connected device is returned
via the CANdoDevicePointer parameter.

Prerequisites CANdo API Library v2.2 or greater

CANdo Firmware N/A

CANdoISO Firmware N/A

 CANdo AUTO Firmware N/A

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

3.5 CANdoClose(…)

Prototype

int CANdoClose(const PCANdoUSB CANdoUSBPointer)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

Return Value

CANDO_SUCCESS
CANDO_INVALID_HANDLE
CANDO_CONNECTION_CLOSED
CANDO_ERROR

Description Closes the connection to the specified CANdo device & frees the handle.

Prerequisites CANdo API Library v1.0 or greater

CANdo Firmware N/A

CANdoISO Firmware N/A

 CANdo AUTO Firmware N/A

3.6 CANdoFlushBuffers(…)

Prototype

int CANdoFlushBuffers(const PCANdoUSB CANdoUSBPointer)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_IO_FAILED

Description Flushes the internal USB read & write buffers.

Prerequisites CANdo API Library v1.0 or greater

CANdo Firmware N/A

CANdoISO Firmware N/A

 CANdo AUTO Firmware N/A

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

3.7 CANdoSetBaudRate(…)

Prototype

int CANdoSetBaudRate(const PCANdoUSB CANdoUSBPointer,
unsigned char SJW, unsigned char BRP, unsigned char PHSEG1,
unsigned char PHSEG2, unsigned char PROPSEG, unsigned char SAM)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

SJW – sync. jump width, 0 – 3. (This is the width of the synchronisation jump
used by the CAN module to achieve synchronisation. 0 = 1 jump bit … 3 = 4
jump bits)

BRP – baud rate prescaler, 0 – 63 for a CANdo device, 0 – 31 & 64 – 127 for
a CANdoISO or CANdo AUTO device (See description below)

PHSEG1 – phase segment 1, 0 – 7 (See description below)

PHSEG2 – phase segment 2, 0 – 7 (See description below)

PROPSEG – propagation segment, 0 – 7 (See description below)

SAM – number of samples per data bit, 0 – 1 (0 = Sample each data bit
once, 1 = Sample each data bit thrice)

NOTE : All these CAN register values are 0 based, so that 0 actually equals
1. For example, a PHSEG1 value of 3 equates to a 4 PHSEG1 segments in
the CAN bit timing. The equations shown below all expect the 0 based
values.

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_WRITE_ERROR
CANDO_WRITE_INCOMPLETE
CANDO_ERROR

Description

Sets the CAN bus baud rate (BR) & bit sampling point (SP) according to the
following equations -

BR = 20000000 / 2 * (BRP + 1) * (4 +PROPSEG + PHSEG1 + PHSEG2)

NOTE : For a CANdo device, the BRP may be programmed between 0 – 63.
For a CANdoISO or CANdo AUTO device the BRP is restricted to between 0
– 31. Within these ranges the BR maybe calculated using the equation
shown above. The minimum programmable baud rate for a CANdo device is
6.25k & for a CANdoISO or CANdo AUTO device is 12.5k baud.

SP = (3 + PROPSEG + PHSEG1) * 100 / (4 + PROPSEG + PHSEG1 +
PHSEG2)

Some rules apply with respect to the values entered into these equations
due to their interdependence upon one another, as described below -

PROPSEG + PHSEG1 + 1 >= PHSEG2
PROPSEG + PHSEG1 + PHSEG2 >= 4
PHSEG2 >= SJW

The table below gives typical settings for some common baud rates -

BR SP BRP PROPSEG PHSEG1 PHSEG2

50k 70% 9 4 7 5

125k 75% 4 2 7 3

250k 75% 1 5 7 4

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

500k 70% 0 4 7 5

1M 80% 0 1 4 1

For a CANdoISO or CANdo AUTO device, the baud rate may be prog-
rammed with a higher setting resolution using a BRP in the range 64 – 127.
In this case the baud rate is calculated using the equation shown below -

BR = 40000000 / 2 * (BRP - 63) * (4 + PROPSEG + PHSEG1 + PHSEG2)

This allows additional baud rates to be programmed that are not available for
a CANdo device. For example -

800k = 40000000 / 2 * (64 – 63) * (4 + 7 + 7 + 7)

The sample point calculation remains the same as before.

NOTE : The baud rate settings are stored internally in the CANdo unit in
non-volatile memory. This ensures that the unit powers up with the last
programmed baud rate settings automatically. The internal memory is only
updated if the baud rate parameters specified in the CANdoSetBaudRate(…)
function differ from those already stored. If the baud rate parameters do
differ, then the unit can take up to 100ms to store the new settings. During
this period the unit is unable to accept any new commands.

NOTE : The values used for BRP, PROPSEG, PHSEG1 & PHSEG2 in the
above equations for the SDK are all 1 less than the corresponding values
shown in the CANdo Application „CAN Setup‟ page. The values shown in the
„CAN Setup‟ page all start at 1 rather than 0, as per the SDK.

Prerequisites CANdo API Library v1.0 or greater

CANdo Firmware v1.0 or greater

CANdoISO Firmware v3.0 or greater

 CANdo AUTO Firmware v1.0 or greater

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

3.8 CANdoSetMode(…)

Prototype

int CANdoSetMode(const PCANdoUSB CANdoUSBPointer,
unsigned char Mode)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

Mode – operating mode, 0 – 2 (0 = Normal, 1 = Listen only, 2 = Loopback)

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_WRITE_ERROR
CANDO_WRITE_INCOMPLETE
CANDO_ERROR

Description

Sets the CAN operating mode.

Normal mode – CANdo acts as a normal active CAN node, allowing both
reception & transmission of CAN messages. An acknowledgement is
automatically sent on successfully receiving a message.

Listen only mode – reception of messages enabled only. No
acknowledgement is sent on successfully receiving a message.

Loopback mode – transmitted messages are routed back to the receiver for
testing purposes. No messages are actually transmitted or received on the
CAN bus in this mode.

NOTE : The operating mode is stored internally in the CANdo unit in non-
volatile memory. This ensures that the unit powers up with the last
programmed operating mode automatically. The internal memory is only
updated if the operating mode parameter specified in the
CANdoSetMode(…) function differs from the one already stored. If the
operating mode does differ, then the unit can take up to 10ms to store the
new setting. During this period the unit is unable to accept any new
commands.

Prerequisites CANdo API Library v1.0 or greater

CANdo Firmware v1.0 or greater

CANdoISO Firmware v1.0 or greater

 CANdo AUTO Firmware v1.0 or greater

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

3.9 CANdoSetFilters(…)

Prototype

int CANdoSetFilters(const PCANdoUSB CANdoUSBPointer,
unsigned int Rx1Mask,
unsigned char Rx1IDE1, unsigned int Rx1Filter1,
unsigned char Rx1IDE2, unsigned int Rx1Filter2,
unsigned int Rx2Mask,
unsigned char Rx2IDE1, unsigned int Rx2Filter1,
unsigned char Rx2IDE2, unsigned int Rx2Filter2,
unsigned char Rx2IDE3, unsigned int Rx2Filter3,
unsigned char Rx2IDE4, unsigned int Rx2Filter4)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

Rx1Mask – receive buffer 1 mask

Rx1IDE1 – flag to indicate Rx1Mask & Rx1Filter1 values are either 11 or 29
bit values (0 = 11 bit ID, 1 = 29 bit ID)

Rx1Filter1 – receive buffer 1, filter 1 (See Appendix B for further details)

Rx1IDE2 – flag to indicate Rx1Filter2 value is either an 11 or 29 bit value (0
= 11 bit ID, 1 = 29 bit ID)

Rx1Filter2 – receive buffer 1, filter 2 (See Appendix B for further details)

Rx2Mask – receive buffer 2 mask

Rx2IDE1 – flag to indicate Rx2Mask & Rx2Filter1 values are either 11 or 29
bit values (0 = 11 bit ID, 1 = 29 bit ID)

Rx2Filter1 – receive buffer 2, filter 1 (See Appendix B for further details)

Rx2IDE2 – flag to indicate Rx2Filter2 value is either an 11 or 29 bit value (0
= 11 bit ID, 1 = 29 bit ID)

Rx2Filter2 – receive buffer 2, filter 2 (See Appendix B for further details)

Rx2IDE3 – flag to indicate Rx2Filter3 value is either an 11 or 29 bit value (0
= 11 bit ID, 1 = 29 bit ID)

Rx2Filter3 – receive buffer 2, filter 3 (See Appendix B for further details)

Rx2IDE4 – flag to indicate Rx2Filter4 value is either an 11 or 29 bit value (0
= 11 bit ID, 1 = 29 bit ID)

Rx2Filter4 – receive buffer 2, filter 4 (See Appendix B for further details)

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_WRITE_ERROR
CANDO_WRITE_INCOMPLETE
CANDO_ERROR

Description

Sets the CAN message receive acceptance filters.

NOTE : Allow 10ms after sending this command for the CAN module filters
to be configured.

(See Appendix B for further details).

Prerequisites CANdo API Library v1.0 or greater

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

CANdo Firmware v1.0 or greater

CANdoISO Firmware v1.0 or greater

 CANdo AUTO Firmware v1.0 or greater

3.10 CANdoSetState(…)

Prototype

int CANdoSetState(const PCANdoUSB CANdoUSBPointer,
unsigned char State)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

State – run state, 0 - 1 (0 = Stop, 1 = Run)

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_WRITE_ERROR
CANDO_WRITE_INCOMPLETE
CANDO_ERROR

Description

Sets the run state.

Stop – disables reception & transmission of messages on the CAN bus. Also
disables the CAN transceiver.

Run – enables transmission & reception of CAN messages. Also resets the
message timestamp & enables the CAN transceiver.

Prerequisites CANdo API Library v1.0 or greater

CANdo Firmware v1.0 or greater

CANdoISO Firmware v1.0 or greater

 CANdo AUTO Firmware v1.0 or greater

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

3.11 CANdoReceive(…)

Prototype

int CANdoReceive(const PCANdoUSB CANdoUSBPointer,
const PCANdoCANBuffer CANdoCANBufferPointer,
const PCANdoStatus CANdoStatusPointer)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

CANdoCANBufferPointer – pointer to TCANdoCANBuffer structure

CANdoStatusPointer – pointer to TCANdoStatus structure

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_READ_ERROR
CANDO_BUFFER_OVERFLOW
CANDO_RX_OVERRUN
CANDO_RX_TYPE_UNKNOWN
CANDO_RX_CRC_ERROR
CANDO_RX_DECODE_ERROR

Description

Receives CAN & status messages sent by CANdo.

The CAN receive message cyclic buffer is passed into the function via the
CANdoCANBufferPointer parameter. The CANdoReceive(…) function
populates this cyclic buffer with any CAN messages received via the CAN
bus.

A single status message is returned by the CANdoReceive(…) function if an
error occurs or a specific status request is sent using one of the functions,
CANdoRequestStatus(…), CANdoRequestDateStatus(…),
CANdoRequestBusLoadStatus(…) or CANdoRequestSetupStatus(...). The
content of the status message depends upon the type of status message
returned by the device & is described in detail in Appendix A, under the
TCANdoStatus type description.

Prerequisites CANdo API Library v1.0 or greater

CANdo Firmware v1.0 or greater

CANdoISO Firmware v1.0 or greater

 CANdo AUTO Firmware v1.0 or greater

3.12 CANdoTransmit(…)

Prototype

int CANdoTransmit(const PCANdoUSB CANdoUSBPointer,
unsigned char IDExtended, unsigned int ID,
unsigned char RTR, unsigned char DLC, const unsigned char * Data,
unsigned char BufferNo, unsigned char RepeatTime)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

IDExtended – flag to indicate 11 or 29 bit message ID, 0 – 1 (0 = 11 bit ID, 1
= 29 bit ID)

ID – CAN message ID, 0 – 7FF (11 bit ID) or 0 – 1FFFFFFF (29 bit ID)

RTR – remote frame flag, 0 – 1 (0 = Data, 1 = Remote frame)

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

DLC – Data Length Code, 0 – 8 (No. of data bytes in message)

Data – byte array containing data to be transmitted (Note : A null pointer is
permitted for a remote frame transmission, see note below)

Buffer No – buffer within CANdo to use for the transmission, 0 - 15. Buffer 0
transmits directly to the CAN bus. Buffers 1 – 15 are specialised repeat
buffers that allow accurate timed transmissions of repetitive messages. To
transmit a message at a specified rate, select one of the buffers 1 – 15 & set
the RepeatTime parameter to one of the values specified below. Once
loaded, a repeat buffer transmits the message in the buffer repetitively, at
the rate specified by the RepeatTime parameter. To stop a repeat buffer
transmitting, set the RepeatTime to 0

RepeatTime – the message transmit repeat time, 0 – 10. (Only applies to the
repeat buffers 1 – 15, set to 0 for buffer 0)

0 Off
1 10ms
2 20ms
3 50ms
4 100ms
5 200ms
6 500ms
7 1000ms
8 2000ms
9 5000ms
10 10000ms

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_WRITE_ERROR
CANDO_WRITE_INCOMPLETE
CANDO_ERROR

Description

Transmits a message on the CAN bus.

The transmitter includes sixteen buffers (0 – 15), one single shot (buffer 0) &
fifteen (buffers 1 – 15) repeat buffers. A message loaded into buffer 0 is
transmitted once only. The repeat buffers once loaded with a CAN message,
repeat the transmission at the rate specified by the RepeatTime parameter.
The repeat buffers allow for accurate repetitive transmissions on the CAN
bus with no overhead on the PC.

NOTE : v2.2 & greater of the CANdo API library allows the „Data‟ pointer to
be null. This is intended for use when transmitting a remote frame that
doesn‟t require data.

Prerequisites CANdo API Library v1.0 or greater

CANdo Firmware v1.0 or greater

CANdoISO Firmware v1.0 or greater

 CANdo AUTO Firmware v1.0 or greater

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

3.13 CANdoRequestStatus(…)

Prototype

int CANdoRequestStatus(const PCANdoUSB CANdoUSBPointer)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_WRITE_ERROR
CANDO_WRITE_INCOMPLETE
CANDO_ERROR

Description

Requests the CAN bus & internal CANdo status.

After sending this command to CANdo, the status is transmitted back to the
PC in <1ms. To read the status, call the CANdoReceive(…) function &
interrogate the NewFlag & status information within the TCANdoStatus
parameter.

(A status message is automatically sent back to the PC if an error is
detected on the CAN bus, or if there is an internal system error within the
CANdo device.)

Prerequisites CANdo API Library v1.0 or greater

CANdo Firmware v1.0 or greater

CANdoISO Firmware v1.0 or greater

 CANdo AUTO Firmware v1.0 or greater

3.14 CANdoRequestDateStatus(…)

Prototype

int CANdoRequestDateStatus(const PCANdoUSB CANdoUSBPointer)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_WRITE_ERROR
CANDO_WRITE_INCOMPLETE
CANDO_ERROR

Description

Requests the date of manufacture of the CANdo device.

After sending this command to CANdo, the date status is transmitted back to
the PC in <1ms. To read the status, call the CANdoReceive(…) function &
interrogate the NewFlag & status information within the TCANdoStatus
parameter.

Prerequisites CANdo API Library v3.0 or greater

CANdo Firmware v3.0 or greater

CANdoISO Firmware v3.0 or greater

 CANdo AUTO Firmware v1.0 or greater

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

3.15 CANdoRequestBusLoadStatus(…)

Prototype

int CANdoRequestBusLoadStatus(const PCANdoUSB CANdoUSBPointer)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_WRITE_ERROR
CANDO_WRITE_INCOMPLETE
CANDO_ERROR

Description

Requests the CAN bus loading as calculated by the CANdoISO or CANdo
AUTO device. The bus load is calculated every second, while the device is
running.

After sending this command to the device, the bus load status is transmitted
back to the PC in <1ms. To read the status, call the CANdoReceive(…)
function & interrogate the NewFlag & status information within the
TCANdoStatus parameter.

NOTE : This function is supported by the CANdoISO & CANdo AUTO
devices only. The command is ignored by the CANdo device.

Prerequisites CANdo API Library v3.0 or greater

CANdo Firmware N/A

CANdoISO Firmware v3.0 or greater

 CANdo AUTO Firmware v1.0 or greater

3.16 CANdoRequestSetupStatus(...)

Prototype

int CANdoRequestSetupStatus(const PCANdoUSB CANdoUSBPointer)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_WRITE_ERROR
CANDO_WRITE_INCOMPLETE
CANDO_ERROR

Description

Requests the setup status of the connected device, this includes the CAN
baud rate & the operating mode.

After sending this command to the device, the setup status is transmitted
back to the PC in <1ms. To read the status, call the CANdoReceive(…)
function & interrogate the NewFlag & status information within the
TCANdoStatus parameter.

NOTE : This function is supported by the CANdo AUTO device only. The
command is ignored by the CANdo & CANdoISO devices.

Prerequisites CANdo API Library v4.0 or greater

CANdo Firmware N/A

CANdoISO Firmware N/A

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

 CANdo AUTO Firmware v1.0 or greater

3.17 CANdoRequestAnalogInputStatus

Prototype

int CANdoRequestAnalogInputStatus(const PCANdoUSB
CANdoUSBPointer)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_WRITE_ERROR
CANDO_WRITE_INCOMPLETE
CANDO_ERROR

Description

Requests the status of the analogue inputs of the connected CANdo AUTO
device.

After sending this command to the device, the device samples & digitises
each analogue input & then transmits the measured values back to the PC in
<1ms. To read the status, call the CANdoReceive(…) function & interrogate
the NewFlag & status information within the TCANdoStatus parameter.

NOTE : This function is supported by the CANdo AUTO device only. The
command is ignored by the CANdo & CANdoISO devices.

Prerequisites CANdo API Library v4.0 or greater

CANdo Firmware N/A

CANdoISO Firmware N/A

 CANdo AUTO Firmware v1.0 or greater

3.18 CANdoClearStatus(…)

Prototype

int CANdoClearStatus(const PCANdoUSB CANdoUSBPointer)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_WRITE_ERROR
CANDO_WRITE_INCOMPLETE
CANDO_ERROR

Description

Clears the internal system status within the CANdo device. The CAN bus
status is not cleared by this function, as this is determined by the state of the
CAN bus & CAN module only.

Prerequisites CANdo API Library v3.0 or greater

CANdo Firmware v3.0 or greater

CANdoISO Firmware v3.0 or greater

 CANdo AUTO Firmware v1.0 or greater

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

3.19 CANdoGetVersion(…)

Prototype

void CANdoGetVersion(unsigned int * APIVersion,
unsigned int * DLLVersion, unsigned int * DriverVersion)

Parameters

APIVersion – pointer that returns the API library version x 10

DLLVersion – pointer that returns the USB library version x 10

DriverVersion – pointer that returns the USB driver version x 10

Return Value

None.

Description

Returns the versions of the API & USB libraries & the USB driver.

The values returned by this function are the version numbers multiplied by
10. To extract the actual version number, divide the returned value by 10 as
a float value, eg. 20 / 10 = v2.0.

Prerequisites CANdo API Library v2.0 or greater

CANdo Firmware N/A

CANdoISO Firmware N/A

 CANdo AUTO Firmware N/A

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

3.20 CANdoAnalogStoreClear(...)

Prototype

int CANdoAnalogStoreClear(const PCANdoUSB CANdoUSBPointer)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_WRITE_ERROR
CANDO_WRITE_INCOMPLETE
CANDO_ERROR

Description

Erases the configuration within the analogue input store.

A call to this function disables the sampling of the analogue inputs & stops
all associated CAN transmit messages.

NOTE : This function is supported by the CANdo AUTO device only. The
command is ignored by the CANdo & CANdoISO devices.

Prerequisites CANdo API Library v4.0 or greater

CANdo Firmware N/A

CANdoISO Firmware N/A

 CANdo AUTO Firmware v1.0 or greater

3.21 CANdoAnalogStoreWrite(...)

Prototype

int CANdoAnalogStoreWrite(const PCANdoUSB CANdoUSBPointer,
unsigned char InputNo, unsigned char IDExtended, unsigned int ID,
unsigned char Start, unsigned char Length,
float ScalingFactor, float Offset,
unsigned char Padding, unsigned char RepeatTime)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

InputNo – analogue input no., 1 – 2 (1 = V1 Input, 2 = V2 Input)

IDExtended – flag to indicate 11 or 29 bit message ID, 0 – 1 (0 = 11 bit ID, 1
= 29 bit ID)

ID – CAN message ID, 0 – 7FF (11 bit ID) or 0 – 1FFFFFFF (29 bit ID)

Start – start byte no. of sampled analogue data in data portion of message, 1
– 8

Length – length in bytes of sampled analogue data in data portion of CAN
message, 1 – 4

ScalingFactor – multiplication factor applied to sampled analogue input data
before insertion into data portion of CAN message

Offset – value added to sampled analogue input data before insertion into
data portion of CAN message

Padding – value of unused data bytes in CAN message

RepeatTime – the message transmit repeat time, 0 – 10.

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

0 Off
1 10ms
2 20ms
3 50ms
4 100ms
5 200ms
6 500ms
7 1000ms
8 2000ms
9 5000ms
10 10000ms

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_WRITE_ERROR
CANDO_WRITE_INCOMPLETE
CANDO_ERROR

Description

Writes the configuration of the CAN message for the specified InputNo to the
analogue input store, in non-volatile memory.

The sampled analogue input data is scaled & offset & then inserted into the
data portion of the CAN message. The data is inserted into the CAN data
starting at the Start byte no. & occupying Length bytes. The sampled input
data is scaled & offset according to the equation given below.

CAN Data Value = (Vn Input sampled value in mV * ScalingFactor) + Offset

NOTE : This function is supported by the CANdo AUTO device only. The
command is ignored by the CANdo & CANdoISO devices.

Prerequisites CANdo API Library v4.0 or greater

CANdo Firmware N/A

CANdoISO Firmware N/A

 CANdo AUTO Firmware v1.0 or greater

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

3.22 CANdoAnalogStoreRead(...)

Prototype

int CANdoAnalogStoreRead(const PCANdoUSB CANdoUSBPointer)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_WRITE_ERROR
CANDO_WRITE_INCOMPLETE
CANDO_ERROR

Description

Requests the contents of the analogue input configuration store.

After sending this command to the device, the analogue input store contents
are sent back to the PC in <1ms. To retrieve the contents, call the
CANdoReceive(…) function. The TCANdoCANBuffer parameter passed into
the CANdoReceive(...) function then holds the configuration data for the
store. Each entry in the buffer holds the configuration data for one input
within a TCANdoCAN structure. The first entry in the buffer pertains to the
V1 Input & the second the V2 Input. The content of the TCANdoCAN
structure is detailed in the table below.

TCANdoCAN Parameter Analogue Input Store Parameter

IDE IDE

RTR 0

ID ID

DLC 8

Data[0] Start

Data[1] Length

Data[2] to Data[4] ScalingFactor

Data[5] to Data[7] Offset

BusState Padding

Timestamp RepeatTime

NOTE : This function is supported by the CANdo AUTO device only. The
command is ignored by the CANdo & CANdoISO devices.

Prerequisites CANdo API Library v4.0 or greater

CANdo Firmware N/A

CANdoISO Firmware N/A

 CANdo AUTO Firmware v1.0 or greater

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

3.23 CANdoTransmitStoreClear(...)

Prototype

int CANdoTransmitStoreClear(const PCANdoUSB CANdoUSBPointer)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_WRITE_ERROR
CANDO_WRITE_INCOMPLETE
CANDO_ERROR

Description

Erases the configuration within the CAN transmit store.

A call to this function clears the CAN transmit store configuration & disables
all the fixed, periodic CAN transmit messages.

NOTE : This function is supported by the CANdo AUTO device only. The
command is ignored by the CANdo & CANdoISO devices.

Prerequisites CANdo API Library v4.0 or greater

CANdo Firmware N/A

CANdoISO Firmware N/A

 CANdo AUTO Firmware v1.0 or greater

3.24 CANdoTransmitStoreWrite(...)

Prototype

int CANdoTransmitStoreWrite(const PCANdoUSB CANdoUSBPointer,
unsigned char IDExtended, unsigned int ID,
unsigned char RTR, unsigned char DLC,
const unsigned char * Data, unsigned char RepeatTime)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

IDExtended – flag to indicate 11 or 29 bit message ID, 0 – 1 (0 = 11 bit ID, 1
= 29 bit ID)

ID – CAN message ID, 0 – 7FF (11 bit ID) or 0 – 1FFFFFFF (29 bit ID)

RTR – remote frame flag, 0 – 1 (0 = Data, 1 = Remote frame)

DLC – Data Length Code, 0 – 8 (No. of data bytes in message)

Data – byte array containing data to be transmitted (Note : A null pointer is
permitted for a remote frame transmission)

RepeatTime – the repeat time of the input sampling & CAN message
transmission, 0 - 10

0 Off
1 10ms
2 20ms
3 50ms
4 100ms
5 200ms
6 500ms
7 1000ms

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

8 2000ms
9 5000ms
10 10000ms

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_WRITE_ERROR
CANDO_WRITE_INCOMPLETE
CANDO_ERROR

Description

Writes the configuration of a single fixed, periodic CAN message to the CAN
transmit store, in non-volatile memory.

Up to 10 CAN transmit messages may be written to the CANdo AUTO
device by repeated calls to this function.

NOTE : This function is supported by the CANdo AUTO device only. The
command is ignored by the CANdo & CANdoISO devices.

Prerequisites CANdo API Library v4.0 or greater

CANdo Firmware N/A

CANdoISO Firmware N/A

 CANdo AUTO Firmware v1.0 or greater

3.25 CANdoTransmitStoreRead(...)

Prototype

int CANdoTransmitStoreRead(const PCANdoUSB CANdoUSBPointer)

Parameters

CANdoUSBPointer – pointer to TCANdoUSB structure

Return Value

CANDO_SUCCESS
CANDO_CONNECTION_CLOSED
CANDO_WRITE_ERROR
CANDO_WRITE_INCOMPLETE
CANDO_ERROR

Description

Requests the contents of the CAN transmit configuration store.

After sending this command to the device, the CAN transmit store contents
are sent back to the PC in <1ms. To retrieve the contents, call the
CANdoReceive(…) function. The TCANdoCANBuffer parameter passed into
the CANdoReceive(...) function then holds the configuration data for the
store. Each entry in the buffer holds the configuration data for one CAN
transmit message within the TCANdoCAN structure.

NOTE : This function is supported by the CANdo AUTO device only. The
command is ignored by the CANdo & CANdoISO devices.

Prerequisites CANdo API Library v4.0 or greater

CANdo Firmware N/A

CANdoISO Firmware N/A

 CANdo AUTO Firmware v1.0 or greater

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

Appendix A – Constants & Type Definitions

CONSTANTS

Parameter Value Description

CANDO_CLOSED 0x00 No connection to CANdo

CANDO_OPEN 0x01 Connection to CANdo open

CANDO_STOP 0x00 Stop Rx/Tx of CAN messages

CANDO_RUN 0x01 Start Rx/Tx of CAN messages

CANDO_NORMAL_MODE 0x00 Normal Rx/Tx CAN mode

CANDO_LISTEN_ONLY_MODE 0x01 Rx only mode, no ACKs

CANDO_LOOPBACK_MODE 0x02 Tx internally looped back to Rx

CANDO_ID_11_BIT 0x00 Standard 11 bit ID

CANDO_ID_29_BIT 0x01 Extended 29 bit ID

CANDO_DATA_FRAME 0x00 CAN data frame

CANDO_REMOTE_FRAME 0x01 CAN remote frame

CANDO_TYPE_ANY 0x0000 Any CANdo hardware type

CANDO_TYPE_CANDO 0x0001 CANdo hardware type

CANDO_TYPE_CANDOISO 0x0002 CANdoISO hardware type

CANDO_TYPE_CANDO_AUTO 0x0003 CANdo AUTO hardware type

CANDO_TYPE_UNKNOWN 0x8000 CANdo hardware type unknown

CANDO_NO_STATUS 0x00 No status available

CANDO_DEVICE_STATUS 0x01 Device status available

CANDO_DATE_STATUS 0x02 Date status available

CANDO_BUS_LOAD_STATUS 0x03 CAN bus load status available

CANDO_PID “8095” CANdo USB PID

CANDOISO_PID “8660” CANdoISO USB PID

CANDO_AUTO_PID “889B” CANdo AUTO USB PID

CANDO_STRING_LENGTH 0x0100 CANdo string length

CANDO_CAN_BUFFER_LENGTH 0x0800
Size of CAN message receive
cyclic buffer

CANDO_CLK_FREQ 20000
CANdo clock frequency for CAN
baud rate calculations

CANDO_CLK_FREQ_HIGH 40000
CANdoISO & CANdo AUTO clock
frequency for CAN baud rate
calculations

CANDO_AUTO_V1_INPUT 0x00 CANdo AUTO V1 analogue input

CANDO_AUTO_V2_INPUT 0x01 CANdo AUTO V2 analogue input

CANDO_AUTO_ANALOG_RESOLUTION 0.0315
CANdo AUTO analogue input
resolution (31.5mV)

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

FUNCTION RETURN CODES

NOTE : Function return codes are logically or‟ed, so a function may return more than one code.

Function Return Code Value Description

CANDO_SUCCESS 0x0000 All OK

CANDO_USB_DLL_ERROR 0x0001 Error loading USB library

CANDO_USB_DRIVER_ERROR 0x0002 Error loading USB Driver

CANDO_NOT_FOUND 0x0004 CANdo not found

CANDO_IO_FAILED 0x0008 Failed to initialise USB parameters

CANDO_CONNECTION_CLOSED 0x0010 No CANdo communications
channel open

CANDO_READ_ERROR 0x0020 USB read error

CANDO_WRITE_ERROR 0x0040 USB write error

CANDO_WRITE_INCOMPLETE 0x0080 Not all requested bytes written to
CANdo

CANDO_BUFFER_OVERFLOW 0x0100 Overflow in cyclic buffer

CANDO_RX_OVERRUN 0x0200 Message received greater than
max. message size

CANDO_RX_TYPE_UNKNOWN 0x0400 Unknown message type received

CANDO_RX_CRC_ERROR 0x0800 CRC mismatch

CANDO_RX_DECODE_ERROR 0x1000 Error decoding message

CANDO_INVALID_HANDLE 0x2000 Invalid device handle

CANDO_ERROR 0x8000 Non specific error

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

TYPES

TCANdoDeviceString

// Array of characters used to store a CANdo string
typedef unsigned char TCANdoDeviceString[CANDO_STRING_LENGTH];

TCANdoDevice

// Structure type used to store CANdo identification information
typedef struct TCANdoDevice

{

 int HardwareType; // Hardware type of this CANdo

 TCANdoDeviceString SerialNo; // USB S/N for this CANdo

} TCANdoDevice;

HardwareType – the CANdo hardware type. The possible values are listed in Appendix A, under
constants, of the form „CANDO_TYPE_x‟.

SerialNo – the device serial number stored as a null terminated „C‟ style string.

TCANdoUSB

// Structure type used to store info. relating to connected CANdo
typedef struct TCANdoUSB

{

 int TotalNo; // Total no. of CANdo on USB bus

 int No; // No. of this CANdo

 unsigned char OpenFlag; // USB communications channel state

 TCANdoDeviceString Description; // USB descriptor string for CANdo

 TCANdoDeviceString SerialNo; // USB S/N for this CANdo

 HANDLE Handle; // Handle to connected CANdo

} TCANdoUSB;

TotalNo – the total number of CANdo devices connected to the PC.

No – the number of this connected CANdo.

OpenFlag – a flag to indicate that the connected device is open (0 = CLOSED, 1 = OPEN) for
communication. Do not attempt to communicate with a device if the connection is closed.

Description – the device description stored as a null terminated „C‟ style string.

SerialNo – the device serial number stored as a null terminated „C‟ style string.

Handle – a windows handle to the connected device, used in all subsequent communication to identify
the device.

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

TCANdoCAN

// Structure type used to store a CAN message
typedef struct TCANdoCAN

{

 unsigned char IDE;

 unsigned char RTR;

 unsigned int ID;

 unsigned char DLC;

 unsigned char Data[8];

 unsigned char BusState;
 unsigned int TimeStamp;
} TCANdoCAN;

IDE – flag to indicate length of CAN ID, 0 = 11 bit ID, 1 = 29 bit ID.

RTR – flag to indicate a remote frame, 0 = data, 1 = remote frame.

ID – 11 or 29 bit ID as specified by the IDE flag.

DLC – (Data Length Code) no. of bytes in message, 0 – 8 bytes.

Data – array of data bytes in message.

BusState – CAN bus status.
(See „CAN Bus Status‟ table below for further details).

Timestamp – a timestamp indicating the receive time of the message since starting CANdo. The
timestamp resolution is 25.6us per bit.

TCANdoCANBuffer

// Structure type used as a cyclic buffer to store decoded CAN messages received from CANdo
typedef struct TCANdoCANBuffer

{

 TCANdoCAN CANMessage[CANDO_CAN_BUFFER_LENGTH];

 int WriteIndex;

 int ReadIndex;

 unsigned char FullFlag;

} TCANdoCANBuffer;

CANMessage[…] – cyclic buffer for CAN receive messages.
(NOTE : The size of the cyclic buffer is currently fixed within the CANdo.dll/libCANdo.so to the value of
CANDO_CAN_BUFFER_LENGTH, this must not be changed.)

WriteIndex – write index pointer for cyclic buffer. Automatically incremented within the
CANdo.dll/libCANdo.so as new CAN messages are received.

ReadIndex – read index pointer for cyclic buffer. Increment this index pointer after reading a message
in the cyclic buffer.

FullFlag – flag to indicate that the cyclic buffer is full. This occurs when the last free slot in the cyclic
buffer is filled with a new message & the write index is incremented so that it equals the read index.

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

TCANdoStatus

// Structure type used to store status information received from CANdo
typedef struct TCANdoStatus

{

 unsigned char HardwareVersion;

 unsigned char SoftwareVersion;

 unsigned char Status;

 unsigned char BusState;

 unsigned int TimeStamp;

 unsigned char NewFlag;

} TCANdoStatus;

HardwareVersion – content depends upon the value of the NewFlag parameter (see „TCANdoStatus
Content Versus NewFlag Value‟ table below for further details) –

1) The version of the CANdo hardware x 10. Divide the HardwareVersion by 10 as a float value
to get the actual version number, eg. 21 / 10 = v2.1

2) The CAN bus load whole part as a percentage ranging from 0 – 100%
3) CAN baud rate BRP ranging from 0 - 127
4) V1 Input sample LSB (Least Significant Byte)

SoftwareVersion – content depends upon the value of the NewFlag parameter (see „TCANdoStatus
Content Versus NewFlag Value‟ table below for further details) –

1) The version of the CANdo software x 10. Divide the SoftwareVersion by 10 as a float value to
get the complete version number, eg. 10 / 10 = v1.0

2) Day of manufacture of the device in the range 1 – 31
3) The CAN bus load fractional part as a percentage ranging from 0.0 – 0.9%
4) CAN baud rate PHSEG1 & PHSEG2, bits 0-3 = PHSEG1, bits 4-7 = PHSEG2
5) V1 Input sample MSB (Most Significant Byte)

Status – content depends upon the value of the NewFlag parameter (see „TCANdoStatus Content
Versus NewFlag Value‟ table below for further details) –

1) Internal status of the CANdo device (see the „CANdo Status‟ table below for further details)
2) Month of manufacture of the device in the range 1 – 12
3) CAN module receive error counter
4) CAN baud rate PROPSEG, SJW & SAM, bit 0 = SAM, bit 1 = SJW, bits 4-7 = PROPSEG
5) V2 Input sample LSB (Least Significant Byte)

BusState – content depends upon the value of the NewFlag parameter (see „TCANdoStatus Content
Versus NewFlag Value‟ table below for further details) –

1) CAN bus status (see „CAN Bus Status‟ table below for further details)
2) Year of manufacture of the device in the range 1 – 99 (2001 – 2099)
3) CAN module transmit error counter
4) CAN operating mode (see table below for possible values)
5) V2 Input sample MSB (Most Significant Byte)

BusState - CAN Operating Mode Value CAN Operating Mode

0x00 Normal

0x20 Sleep

0x40 Loopback

0x60 Listen Only

0x80 Configuration

Timestamp – a timestamp indicating the receive time of the message since starting CANdo. The
timestamp resolution is 25.6us per bit.

NewFlag – a flag to indicate the arrival of a new status message. Clear this flag after reading the
status message.

Prior to v3.0 of the API library, the NewFlag took one of two values, 0 indicated a FALSE state & any
other value indicated a TRUE state, ie. a new status message present. From v3.0 of the API library
onwards, the NewFlag may take one of several values that indicate the type of status message

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

present in the TCANdoStatus parameters. The NewFlag may take on any of the values as defined by
the constants –

CANDO_NO_STATUS
CANDO_DEVICE_STATUS
CANDO_DATE_STATUS
CANDO_BUS_LOAD_STATUS
CANDO_SETUP_STATUS
CANDO_ANALOG_INPUT_STATUS

The CANDO_NO_STATUS is the equivalent to the old FALSE & indicates the cleared state, ie. no
status message present. The CANDO_DEVICE_STATUS is equivalent to the old TRUE, indicating a
device status message is present in the TCANdoStatus parameters.

The table on the next page details the content of the TCANdoStatus parameters based upon the value
of the NewFlag.

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

TCANdoStatus Content Versus NewFlag Value

*1

Vn Value = Vn Input sample LSB + (Vn Input sample MSB * 256)

TCANdoStatus
Parameter

NewFlag Value

CANDO_DEVICE_STATUS CANDO_DATE_STATUS CANDO_BUS_LOAD_STATUS CANDO_SETUP_STATUS CANDO_ANALOG_INPUT_STATUS

HardwareVersion

Hardware version

Hardware version

CAN bus load 0-100% CAN baud rate BRP

*1
V1 Input sample LSB

SoftwareVersion

Software version

Day of manufacture

CAN bus load 0.0-0.9%

CAN baud rate PHSEG1
& PHSEG2

*1
V1 Input sample MSB

Status

System status

Month of manufacture

CAN receive error count

CAN baud rate
PROPSEG, SJW & SAM

*1
V2 Input sample LSB

BusState

Bus state

Year of manufacture

CAN transmit error count CAN operating mode

*1
V2 Input sample MSB

Timestamp

Timestamp

Timestamp

Timestamp Timestamp Timestamp

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

CANdo Status

Constant

Value Description

CANDO_OK 0x00 All OK

CANDO_USB_RX_OVERRUN 0x01 USB port receive message overrun

CANDO_USB_RX_CORRUPTED 0x02 USB port receive message invalid

CANDO_USB_RX_CRC_ERROR 0x04 USB port receive message CRC error

CANDO_CAN_RX_NO_DATA 0x08 CAN receive message no data

CANDO_CAN_RX_OVERRUN 0x10 CAN receive message overrun

CANDO_CAN_RX_INVALID 0x20 CAN receive message invalid

CANDO_CAN_TX_OVERRUN 0x40 CAN transmit message overrun

CANDO_CAN_BUS_ERROR 0x80 CAN bus error

NOTE : These status codes maybe logically or‟ed

CAN Bus Status

Constant

Value Description

CAN_OK 0x00 All OK

CAN_WARN 0x01 Rx/Tx warning (>95 errors)

CAN_RX_WARN 0x02 Receiver warning (>95 errors)

CAN_TX_WARN 0x04 Transmitter warning (>95 errors)

CAN_RX_PASSIVE 0x08 Receiver bus passive (>127 errors)

CAN_TX_PASSIVE 0x10 Transmitter bus passive (>127 errors)

CAN_TX_OFF 0x20 Transmitter bus off (>255 errors)

CAN_RX1_OVERFLOW 0x40 Receive buffer 1 overflow

CAN_RX2_OVERFLOW 0x80 Receive buffer 2 overflow

NOTE : These status codes maybe logically or‟ed

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

Appendix B – CAN Receive Message Filtering

CANdo contains two CAN receive message buffers that operate independently, both capable of
receiving messages from the CAN bus. Normally these buffers are programmed with no filters applied
so that they receive all messages, with both 11 bit & 29 bit IDs. However, filters may be applied to
these receive buffers to allow through only messages with an ID that matches at least one of the
filters. This is sometimes useful when looking for a particular message or when analysing a heavily
loaded bus.

The filtering consists of a mask for each buffer & a set of filters, two filters for buffer 1 & four filters for
buffer 2. The mask identifies which bits within the ID are relevant for filtering. If the mask bit is set to a
logic '1', then this bit is used to match the corresponding bit in the received message ID with each of
the filters in turn. If there is a match between all the relevant bits of the message ID & all the relevant
ID bits of at least one of the filters, then the message is accepted by the receive buffer. If there is no
match between the filters & the message ID then the message is rejected.

Bits within the mask that are set to a logic '0' are ignored for filtering purposes. Hence, if the mask is
all zeroes, '000' (hexadecimal) for an 11 bit mask or '00000000' (hexadecimal) for a 29 bit mask, then
the receive buffer accepts all messages.

For example, if the mask & filters of receive buffer 1 are configured for 11 bit ID messages & loaded
with the values shown below (all values are in binary),

11100000000 – MASK
00100000000 – FILTER 1

01000000000 – FILTER 2

then only messages with an ID in the range 100 to 2FF (hexadecimal) are accepted by this buffer.

RECEIVED MESSAGE
only loaded into BUFFER
if ID matches either
FILTER 1 or 2 for those
bits of the MASK that are
logic „1‟

Receive buffer 1

MASK

FILTER 1

FILTER 2

BUFFER RECEIVED MESSAGE

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

Appendix C – Version Revision Notes

The notes below describe the changes necessary to upgrade an application to use the latest version
of the CANdo SDK.

Version 1.0 to version 1.1

1

No changes necessary.

Version 1.1 to version 2.0

1

CANdoOpen(…) function now returns CANDO_USB_DRIVER_ERROR, if the USB driver is not
found or is an older, incompatible version. See SDK examples for usage.

CANDO_USB_DRIVER_ERROR function return code added to „Function Return Code‟ table in
Appendix A.

Application programs that use the SDK must be re-compiled after copying across the latest
version of the CANdoImport header file from the SDK. Copy the header file from the SDK project
that corresponds to the application programming language, eg. CANdoImport.cs from the C#
example for a Visual C# project.

2

CANdoGetVersion(…) function is available to determine if the correct libraries & USB driver are
installed on the PC. See section 3 for more details.

If the variables, APIVersion, DLLVersion & DriverVersion passed into this function are cleared to
0 before this function is called, then any unmodified return values indicate a missing or
incompatible version of the corresponding library/driver. See SDK examples for usage.

This function is new in v2.0 of the API DLL.

3

The CANdoUSB.dll & CANdo.dll files are currently only available as 32 bit files. To use these
files on a 64 bit version of Windows, the WOW64 sub-system must be used.

Projects written in Visual C# or Visual Basic that use the .NET Framework must be compiled to
use 32 bit instructions only. To set this up in Visual Studio 2005, 2008 or 2010, open the „Build‟
menu & select the „Configuration Manager…‟. In the „Active solution platform‟ drop down box,
click on <New…>. In the „New platform‟ drop down box, select x86, then click on OK to exit.
Make sure that the x86 platform is selected & then re-compile the project.

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

Version 2.0 to version 2.1

1

CANdoClose(…) function now returns a status value to indicate success or otherwise in closing
the connection to the CANdo device.

No changes are necessary to upgrade from a previous version of the SDK.

2

CANDO_INVALID_HANDLE function return code added to „Function Return Code‟ table in
Appendix A.

Application programs that use the SDK must be re-compiled after copying across the latest
version of the CANdoImport header file from the SDK. Copy the header file from the SDK project
that corresponds to the application programming language, eg. CANdoImport.cs from the C#
example for a Visual C# project.

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

Version 2.1 to version 2.2

1

CANdoGetDevices(...) function is available to determine the number & type of CANdo devices
connected to the PC. See section 3 for more details.

A single entry in the CANdoDevices array returned by this function may be passed into the
CANdoOpenDevice(...) function to allow connection to a specific CANdo device. See SDK
examples for usage.

This function is new in v2.2 of the API DLL.

2

CANdoOpenDevice(...) function is available to allow a connection to a specific CANdo device.
Selection maybe made by hardware type, serial number or both. See section 3 for more details.

This function is new in v2.2 of the API DLL.

3

CANdoDevice variable type added.

Structure type to store CANdo H/W type & serial no. info. to allow unique identification of each
CANdo device.

This is a new variable type in v2.2 of the API DLL.

4

CANDO_CLOSED function return code renamed CANDO_CONNECTION_CLOSED.

Application programs that use the SDK must be re-compiled after copying across the latest
version of the CANdoImport header file from the SDK. Copy the header file from the SDK project
that corresponds to the application programming language, eg. CANdoImport.cs from the C#
example for a Visual C# project.

5

The CANdoTransmit(…) function may now be called using a null pointer in the place of the
„Data‟ array. This is primarily intended for use when transmitting a remote frame, as no data is
needed.

If a data frame is transmitted & a null pointer is passed in rather than a „Data‟ array, then all data
is transmitted as zero.

Version 2.2 to version 2.3

1

No changes necessary.

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

Version 2.3 to version 3.0

1

No changes are necessary to use the new v3.0 API DLL with existing projects based on the
SDK. However, to access the new features & for full compatibility, projects should be re-
compiled, after copying across the relevant CANdoImport header file & making the necessary
changes in the project file(s) for all instances of the TCANdoStatus NewFlag. See Appendix A
for more details.

The content of the TCANdoStatus parameters is extended in v3.0 of the API DLL.

2

CANdoGetPID(...) function is available to allow custom variants of CANdo to be identified by
software based on the SDK. See section 3 for more details.

This function is new in v3.0 of the API DLL.

3

CANdoRequestDateStatus(...) function is available to request the date of manufacture of a
CANdo device. The date is returned within the TCANdoStatus parameters after a call to the
CANdoReceive(…) function. See section 3 for more details.

This function is new in v3.0 of the API DLL.

4

CANdoRequestBusLoadStatus(...) function is available to request the CAN bus load calculated
by a CANdoISO device. The bus load is returned within the TCANdoStatus parameters after a
call to the CANdoReceive(…) function. See section 3 for more details.

This function is new in v3.0 of the API DLL.

5

CANdoClearStatus(...) function is available to clear the CANdo internal system status, similar to
the CANdoRequestStatus(…) function, but without the subsequent status reply. See section 3
for more details.

This function is new in v3.0 of the API DLL.

© 2006-14 Netronics Ltd. June 2014 NET50003/2 v4.1

Version 3.0 to version 4.0

1

No changes are necessary to use the new v4.0 API DLL with existing projects based on the
SDK. However, to access the new features & for full compatibility, projects should be re-
compiled, after copying across the relevant CANdoImport header file.

This version of the SDK includes both 32 & 64 bit versions of the DLLs, allowing SDK based
projects to be compiled as both 32 & 64 bit applications.

2

The functions CANdoAnalogStoreClear(...), CANdoAnalogStoreWrite(...) &
CANdoAnalogStoreRead(...) are available to allow configuration of the analogue input store
within the CANdo AUTO device, via the SDK. Please refer to the example projects for additional
help with using these functions.

These functions are new in v4.0 of the API DLL.

3

The functions CANdoTransmitStoreClear(...), CANdoTransmitStoreWrite(...) &
CANdoTransmitStoreRead(...) are available to allow configuration of the CAN transmit store
within the CANdo AUTO device, via the SDK. Please refer to the example projects for additional
help with using these functions.

These functions are new in v4.0 of the API DLL.

4

Projects written in Visual C# or Visual Basic that use the .NET Framework may now be compiled
in both 32 & 64 bit variants. In Visual Studio 2005, 2008, 2010 & 2012 this is achieved by
selecting „Any CPU‟ in the „Configuration Manager...‟, accessed via the „Build‟ menu item.

Version 4.0 to version 4.1

1

No changes necessary.

2

Linux SDK containing libCANdo.so API library available in this version of the SDK.

